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ABSTRACT 

This study examines optimal control methods for a servo motor, focusing on performance 
evaluation in both open-loop and closed-loop conditions. In open-loop configuration, the PID 
method is identified as the best solution due to its ability to provide superior system stability and 
response. For closed-loop systems, a proportional (P) control method is selected based on its fast 
rise time and very small overshoot, making it suitable for applications requiring rapid response and 
high accuracy. The parameter values for the closed-loop system are determined using the Routh-
Hurwitz criteria to ensure system stability. The findings of this research provide practical guidance 
for the efficient and stable implementation of DC motor control. 
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I.INTRODUCTION  

In modern industrial applications, precise 
control of motor systems is essential for 
achieving high performance and reliability. 
One of the widely used motor types in various 
sectors is the Rotary Type S-50-39 motor. This 
motor is known for its robust performance 
and adaptability in a range of environments. 
Understanding the dynamic behavior of this 
motor through mathematical modeling and 
simulation is crucial for optimizing its 
performance in both open loop and closed 
loop control systems. 
 
Mathematical modeling provides a 
framework for describing the dynamic 
characteristics of the Rotary Type S-50-39 
motor. By representing the motor as a 
second-order system, we can capture its 
response to various inputs and disturbances. 
This modeling is foundational for designing 
control systems that ensure the motor 
operates efficiently and accurately. 
 
Open loop control systems, while simpler to 
implement, do not account for feedback, 
making them less effective in compensating 
for disturbances or variations in system 

parameters. On the other hand, closed loop 
control systems incorporate feedback 
mechanisms to continuously adjust the 
motor’s input, thereby maintaining the 
desired output despite external 
perturbations. The comparative analysis of 
open loop and closed loop systems provides 
valuable insights into the advantages and 
limitations of each approach. 
 
In this study, we aim to develop a 
comprehensive mathematical model of the 
Rotary Type S-50-39 motor and simulate its 
performance under open loop and closed 
loop configurations. By analyzing the 
transient and steady-state responses, we 
seek to identify optimal control strategies 
that enhance the motor’s operational 
efficiency and precision. The findings from 
this research will contribute to the 
development of more effective control 
systems for rotary motors in various industrial 
applicationss.  
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II.METHODOLOGY  

Several related research papers are being 
reviewed and studied to improve the control 
system model of the existing motor to 
achieve the best efficiency point. The results 
of each project will be summarized, and all 
advantages and limitations will be 
compared. 

1. Mathematical model of servo motor 
In this work, the schematic of the S-50-39 
servo motor is analyzed. From this schematic, 
a mathematical model of the motor will be 
derived to determine the modeling of this 
motor. The obtained mathematical model 
will be used to determine the necessary 
datasheet variables to subsequently obtain 
the transfer function. 

2. Obtaining the transfer function from 
the datasheet 

In this step, inputting variable values and 
obtaining the transfer function using 
equation 

3. Modeling a motor in open loop circuit 
The mathematical model forms the basis for 
creating a control system model. From here, 
it is necessary to first assemble the system. This 
involves creating a basic circuit with a 
reference scheme as the input, the transfer 
function as the plant, and a scope/display as 
the output. 

4. Modeling a motor in close loop circuit 
In this closed-loop circuit, what differentiates 
it from the open-loop circuit is the presence 
of a feedback plan. Mathematically, it can 
be said that the output of the transfer 
function is a real number, whereas the 
feedback is an imaginary number. Values 
need to be added, from which the rise time 
value will emerge. In the case of a rotary 
motor, the feedback value can be obtained 
by multiplying the transfer function by Ɵ(s). In 
the transfer function that I have obtained 
with units in rad/s, this transfer can be 
multiplied by 1/s to convert it to radians. 
 

III.RESULT & DISCUSION  

Mathematical model of servo motor  

In this work, the schematic of the S-50-39 
servo motor is analyzed. From this schematic, 

a mathematical model of the motor will be 
derived to determine the modeling of this 
motor. The obtained mathematical model 
will be used to determine the necessary 
datasheet variables to subsequently obtain 
the transfer function. 

Table 1 Datasheet 

Variabel Unit Value 

Resistance Ω 6.6 

Inductance H 1.5 

Frameless Rotor Inertia Kg.m^2 
1.10^-
5 

Torque Constant N.m/A 0.09 

BEMF Constans V/rad.s^-1 0.0984 

Damping coefficient 
N.m/rad.s^-
1 0.002 

 

 

Fig. 1 Schematic servo motor 

The voltage equation for a DC motor is; 

𝑽(𝒕) = 𝑳 
𝒅𝒊(𝒕)

𝒅𝒕
+ 𝑹𝒊(𝒕) + 𝒆(𝒕)                                                                    

(1) 

In the context of a servo motor, 𝑉(𝑡) 
represents the input voltage, L denotes the 
inductance of the motor windings, R signifies 
the resistance of the motor windings, and i(t) 
is the current flowing through the motor 
windings and 𝐾𝑏(𝑡) is the back EMF constant. 

 

The equation of motion for the mechanical 
part of the motor is: 
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J
ௗఠ(௧)

ௗ௧
+ 𝐵𝜔(𝑡) = 𝑇𝑚(𝑡) − 𝑇𝐿(𝑡)                                                                    

(2) 

When in the context of a DC motor control 
system, J represents the moment of inertia of 
the rotor, which is a measure of the rotor's 
resistance to changes in its rotational speed. 
The coefficient of viscous friction, denoted as 
B, quantifies the resistive force due to friction 
that opposes the rotor's motion. The angular 
velocity of the rotor is represented by 𝜔(𝑡), 
indicating how fast the rotor is spinning at a 
given time. The torque produced by the 
motor is denoted as 𝑇𝑚(𝑡), which drives the 
rotor's motion. Additionally, 𝑇𝐿(𝑡) represents 
the load torque, which is the external torque 
applied to the motor, often from a load or 
external resistance the motor is working 
against. 

The motor torque 𝑇𝑚(𝑡) is related to the 
motor current 𝐾𝑡 𝑖(𝑡) by the equation: where 
𝐾𝑡 is the motor torque constant. 

Transfer function untuk kecepatan sudut Ω(s) 
terhadap tegangan input V(s)  adalah: 

Ω(ୱ)

௏(௦)
=  

௄௧

(௃௦ା஻)(ோା௦௅)ା௄௧௄௘
                                                                              

(3) 

Laplace transform of an electrical differential 
equation: 

𝑉(𝑠) = 𝐿𝑠 × 𝐼(𝑠) + 𝑅 × 𝐼(𝑠) + 𝐾𝑏 × Ω(s)                                                              
(4) 

Laplace transform of a mechanical 
differential equation: 

𝐽𝑠 × Ω(s) + 𝐵 × Ω(s) = 𝐾𝑡 × 𝐼(𝑠)                                                                 
(5) 

A servo motor is controlled using feedback to 
achieve the desired position or speed. A 
commonly used control model is the PID 
(Proportional-Integral-Derivative) control: 

 

u(t) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖∫ 𝑒(𝑡)𝑑𝑡 + 𝐾𝑑
ௗ௘(௧)

ௗ௧
                                                                

(6) 

Where in this context, u(t) represents the 
control signal applied to the system, while 
𝑒(𝑡) denotes the error, which is the disparity 
between the desired and actual positions or 
velocities. The terms 𝐾𝑝, 𝐾𝑖, 𝑎𝑛𝑑 𝐾𝑑 stand for 
the proportional, integral, and derivative 
gains of the controller, respectively. These 
gains play crucial roles in shaping the 
response of the control system: 𝐾𝑝 adjusts the 
immediate response to the current error, 𝐾𝑖 
addresses accumulated past errors over 
time, and 𝐾𝑑  influences the system's 
response to the rate of change of the error. 
Together, these parameters contribute to the 
overall performance and stability of the 
control system, ensuring that the system 
behaves as intended in various operating 
conditions. 

Obtaining the transfer function from the 
datasheet 

In this step, inputting variable values and 
obtaining the transfer function using 
equation (3). 

Ω(s)

𝑉(𝑠)
=  

𝐾𝑡

(𝐽𝑠 + 𝐵)(𝑅 + 𝑠𝐿) + 𝐾𝑡𝐾𝑒
 

 

𝐺𝑠

=  
0.09

(0.00001 + 0.002)(6.6 + 1.5) + 0.09. 0.0984
 

 

𝐺𝑠 =  
0.09

1.5 × 10ିହ 𝑆ଶ + 0.003066 𝑆 + 0.02206
 

 

From the obtained transfer function, using 
the syntax step(Gs) will display the graph. 
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Fig. 2 Transfer Function step response 

Modeling a motor in open loop circuit 

The mathematical model forms the basis for 
creating a control system model. From here, 
it is necessary to first assemble the system. This 
involves creating a basic circuit with a 
reference scheme as the input, the transfer 
function as the plant, and a scope/display as 
the output. 

 

Fig. 3 Open loop Control System 

The reference signal will be sent to the output 
through the transfer function as the plant and 
plotted according to the transfer function 
values. 

 

 

Fig. 4 Scope Open Loop Control System 

The graph above represents a direct plot of 
the values generated by the transfer 

function, yielding a value of 4.08. Setelah 
mengidentifikasi koefisien penyebut 𝜶𝟐 = 
1.5×10−5, 𝜶𝟏 = 0.003066, dan 𝜶𝟐 = 0.02206, 
kita dapat menghitung frekuensi natural (ωn) 
dan faktor redaman (ζ) sistem. Frekuensi 
natural (ωn) diperoleh dengan rumus; 

𝝎𝒏 =  ඨ
𝖆𝟎

𝖆𝟐
  =  ඨ

𝟎. 𝟎𝟐𝟐𝟎𝟔

𝟏. 𝟓 × 𝟏𝟎ି𝟓
= 𝟒𝟔. 𝟗𝟖 𝒓𝒂𝒅/𝒔 

𝜻 =  
𝜶𝟏

𝟐√𝜶𝟐𝜶𝟎
=  

𝟎. 𝟎𝟎𝟑𝟎𝟔𝟔

𝟐√𝟏. 𝟓. 𝟏𝟎ି𝟓 × 𝟎. 𝟎𝟐𝟐𝟎𝟔
= 𝟎. 𝟓𝟔𝟕 

This equation describes the dynamic 
response of the system to an input in the 
Laplace domain. Thus, this transfer function 
provides an overview of how the system will 
respond to a specific input signal, 
determined by the previously calculated 
natural frequency and damping factor. 

Modeling a motor in close loop circuit 

In this closed-loop circuit, what differentiates 
it from the open-loop circuit is the presence 
of a feedback plan. Mathematically, it can 
be said that the output of the transfer 
function is a real number, whereas the 
feedback is an imaginary number. Values 
need to be added, from which the rise time 
value will emerge. In the case of a rotary 
motor, the feedback value can be obtained 
by multiplying the transfer function by Ɵ(s). In 
the transfer function that I have obtained 
with units in rad/s, this transfer can be 
multiplied by 1/s to convert it to radians. The 
equation is as follows: 

𝐺𝑠 =  
0.09

1.5 × 10ିହ 𝑆ଶ + 0.003066 𝑆 + 0.02206
×

1

𝑆
 

 

𝐺𝑠

=  
0.09

1.5 × 10ିହ 𝑆ଷ + 0.003066 𝑆ଶ + 0.02206 𝑆 + 0
 

 

Before that, a rise time value is needed to be 
used as a reference point/reference value. 
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Once this value is obtained, we can proceed 
to the above step. After obtaining the value 
with the modified transfer function, that will 
become the feedback value. In this closed-
loop circuit, what differentiates it from the 
open-loop circuit is the presence of a 
feedback plan. Mathematically, it can be 
said that the output of the transfer function is 
a real number, whereas the feedback is an 
imaginary number. 

 

Fig. 6 Close loop Control System 

 

 

Fig. 7 Close loop Control System with the 
modified transfer function 

2.Discussion 

Based on the findings: 

1. The proportional (P) component  

Produces an output that is proportional to 
the current error, which is the difference 
between the setpoint (desired value) and 
the process value (measured value). The 
purpose of the proportional function is to 
directly reduce the error, with larger errors 
resulting in larger corrections. However, this 
component alone cannot eliminate steady-
state error or constant error. 

2. The integral (I) component  

Calculates the accumulated error over time 
and adjusts the output to eliminate residual 
errors that may not be corrected by the 

proportional component alone. By summing 
past errors, the integral function can 
eliminate steady-state errors, although this 
may slow down system response and 
increase the risk of overshoot. 

3. The derivative (D) 

Component responds to the rate of change 
of error by predicting error trends and taking 
corrective action to reduce overshoot and 
improve system stability. The derivative 
function dampens rapid changes in error 
and speeds up system response, although it 
is sensitive to noise in the error signal which 
can cause undesirable output fluctuations. 

4. Effectiveness of PID in Open Loop:  

The research indicates that the PID method is 
optimal for open-loop control systems. PID 
controllers are versatile in adjusting control 
inputs based on proportional, integral, and 
derivative terms. This capability allows them 
to effectively regulate systems without 
feedback, ensuring accurate and stable 
performance across varying conditions and 
disturbances. 

5. Advantages of P Controller in Closed 
Loop:  

In closed-loop systems, the P controller has 
been identified as favorable due to its ability 
to achieve a fast rise time and minimal 
overshoot. The parameters Kp = 4.5 and 
critical period Pcr = 38.3458, determined 
using the Routh-Hurwitz method, highlight the 
controller's capacity to quickly approach 
and stabilize around the desired setpoint. This 
makes the P controller particularly suitable for 
applications where precise control with 
minimal oscillations is crucial, such as in 
robotic systems or industrial processes 
requiring rapid response to input changes. 

6. Comparison and Practical 
Applications:  

Comparing the two methods reveals that PID 
is beneficial in scenarios where precise open-
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loop control is essential, offering robustness 
and adaptability. On the other hand, the P 
controller excels in closed-loop systems by 
providing a faster response time and tighter 
control over the system's behavior, 
minimizing deviations from the desired output 
without introducing excessive oscillations. 

In summary, while PID controllers are well-
suited for maintaining stability and accuracy 
in open-loop environments, the P controller, 
with its optimized parameters derived from 
rigorous analysis methods like Routh-Hurwitz, 
proves effective in achieving responsive and 
stable closed-loop control. These insights 
guide the selection of appropriate control 
strategies tailored to specific operational 
requirements and performance criteria in 
engineering applications. 
 

IV.CONCLUSION  

Based on the research findings, the PID 
method has proven effective for 
implementing control in open-loop systems. 
Meanwhile, for closed-loop systems, the 
approach using a P controller shows fast rise 
time and minimal overshoot. Using the Routh-
Hurwitz method to determine the parameters 
of the P controller yielded Kp = 4.5 and a 
critical period value Pcr = 38.3458. 

These conclusions indicate that the PID 
approach is suitable for open-loop 
applications, while the P controller approach 
with parameters derived from Routh-Hurwitz 
analysis can provide quick and stable 
responses in closed-loop systems, optimizing 
rise time and reducing overshoot. 
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